
Homework 2 Quantum information and communication 30.09.2024

1. Imperfect BB84 with mismatched basis alignment

We let |α⟩ = cosα |0⟩ + sinα |1⟩, |α⊥⟩ = − sinα |0⟩ + cosα |1⟩, and H = 1√
2

(
1 1
1 −1

)
the

Hadamard matrix. Alice and Bob use the BB84 protocol to generate a one-time pad, but
they do not know that their respective encoding and decoding basis are misaligned by a (small)
angle α. We remind the first steps of the protocol:

• Alice generates two independent random bit sequences xi and ei, i = 1, . . . , n. Each
sequence is i.i.d with uniform probabilities 1/2 for each bit. If ei = 0 she sends (to
Bob) a qubit in state |xi⟩. If ei = 1 she sends a qubit in state H |xi⟩.

• Bob generates a random sequence d1 . . . dN of i.i.d bits with uniform probabilities 1/2.
If di = 0 Bob measures the received state with the basis |α⟩, |α⊥⟩, and if d = 1 he
measures with the basis H |α⟩, H |α⊥⟩. When measurements output |α⟩ or H |α⟩ he
registers yi = 0, and when measurements output |α⊥⟩ or H |α⊥⟩ he registers yi = 1.

(a) Compute P(xi = yi|ei = di = 0, xi = 0); P(xi = yi|ei = di = 0, xi = 1); and
P(xi = yi|ei = di = 1, xi = 0); P(xi = yi|ei = di = 1, xi = 1). Deduce P(xi = yi|ei = di)

(b) Explain the rest of the protocol and in particular explain how Alice and Bob can
evaluate the misalignment of their basis thanks to the security test (assuming for some
reason they know the protocol is noiseless and there is no eavesdropper).

2. Imperfect dense coding with an unknown entangled

state

Alice and Bob use dense coding to communicate 2 classical bits. But they dont know they
share state |S⟩ = 1√

3
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B + |0⟩A ⊗ |1⟩B) instead of the usual Bell state.

We recall the steps used by Alice and Bob:

• In order to send message ij ∈ {00, 01, 10, 11} Alice applies the unitary Zi
AX

j
A to her

qubit and then sends it to Bob. We recall X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
.

• Once in possession of the pair Bob performs a measurement in the Bell basis |Ψ±⟩ =
1√
2
(|00⟩ ± |11⟩, |Φ±⟩ = 1√

2
(|01⟩ ± |10⟩. Bob’s decoding map is |Ψ+⟩ → 00, |Φ+⟩ → 01,

|Ψ−⟩ → 10, |Φ−⟩ → 11.

(a) Prove that |S⟩ is an entangled state.
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(b) For each message ij, what is the state of the pair of qubits in Bob’s lab just after
receiving Alice’s qubit?

(c) Suppose now Alice intends to send message 10. What are the possible measurement
outcomes of Bob and their respective probabilities?

(d) Still assuming Alice’s message is 10, what is the probability of a transmission error?

3. QKD: a scheme between three parties with W states

Notation: In this problem it is more convenient to use the following notations. The computa-
tional basis states |0⟩, |1⟩ (or Z basis) are called |z+⟩, |z−⟩ and the states |±⟩ = 1

2
(|0⟩±|1⟩ (or

X basis) are denoted |x+⟩ and |x−⟩. Note that these states are the outcomes of measurements
of the observables X and Z (Pauli matrices).

Suppose three parties A, B, C share a number of |W ⟩ states,

|W ⟩ = 1√
3
(|z+z−z−⟩+ |z−z+z−⟩+ |z−z−z+⟩)

One can show that this is a fully entangled state in the sense that it is not equal a product
state of the type A⊗B ⊗ C nor of the type (AB)⊗ C, (AC)⊗B, (BC)⊗ A.

The goal of A, B, C is to generate pairs of secret keys or ”one-time pads” (one for AB,
one for BC, one for AC) by making appropriate local measurements and using classical
communication. Consider the following protocol for each instant of time t = 1, . . . N :

1. A, B, C each choose an X or Z basis at random. Thus they have 8 choices i− j − k with
i, j, k ∈ {X,Z}. They perform a local measurement and keep the outcome secret.

2. They announce publicly their choice of basis.

3. They keep their measurement outcomes (secret) if the choice of basis are Z − X − X,
X − Z −X, X −X − Z. The rest of the outcomes are discarded.

4. For the above choices only one of them choose the Z basis. At each such instant he is
called the ”decider”. The decider looks at his measurement outcome and (here suppose
the decider is C):

• if it is |z+⟩ he announces publicly to A and B to discard their measurement outcomes.

• if it is |z−⟩ he announces publicly to A and B to keep their measurement outcomes
and turn them into their key bits: |x+⟩ → 1 and |x−⟩ → 0. One can show that the
key bits of A and B are equal.

When the decider is A (resp. B) she instructs BC (resp. AC) publicly similarly.
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5. A, B, C do a security test similar to BB84 by revealing a small fraction of their secret bits.
If the test passes they keep their secret pairwise keys. If it fails they abort communication.

Question a: Check that the W-state can be written as

|W ⟩ =
√

2

3
|z−⟩A ⊗ |x+x+⟩BC − |x−x−⟩BC√

2
+

1√
3
|z+⟩A ⊗ |x+⟩B − |x−⟩B√

2
⊗ |x+⟩C − |x−⟩C√

2

Deduce that for the three basis choices Z − X − X, X − Z − X, X − X − Z the possible
outcomes of measurements are given by this table (the decider has the Z basis and the two
other parties the X basis). Compute also the probabilities for each outcome.

Question b: Convince yourself that each pair of parties has its own one-time pad. What
is then the length of each one-time pad (i.e., what fraction of N) ? On average, to produce
one secret-key bit, how many quantum bits are needed in this protocol?

4. Entanglement Concentration and Dilution Protocols

We study two related ‘Local Operation and Classical Communication’ (LOCC) protocols. Al-
ice and Bob are at two distant locations and are allowed to perform local operations (unitaries
and measurements) and also communicate through classical messages.

I. Entanglement concentration: Alice and Bob share a Bell pair |Φ⟩AB = 1√
2
(|00⟩AB +

|11⟩AB). Their task is to transform it to |Ψθ⟩ = cos θ|00⟩AB + sin θ|11⟩AB, 0 < θ < 2π. Alice
also has an extra ancilla qubit. We guide you through the LOCC:
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1. The extra ancilla qubit of Alice is in the state |0⟩A′ and she performs a local unitary on
AA′:

U = F0A ⊗ 1A′ + iF1A ⊗XA′

where

F0A =

(
cos θ 0
0 sin θ

)
, F1A =

(
sin θ 0
0 cos θ

)
, 1A′ =

(
1 0
0 1

)
, XA′ =

(
0 1
1 0

)
.

Compute the final global state of Alice and Bob (for the three qubits ABA′).
Hint: the initial state can be written |Φ⟩AB⊗|0⟩A′ = 1√

2
(|0⟩A⊗|0⟩A′⊗|0⟩B+|1⟩A⊗|0⟩A′⊗|1⟩B).

2. Alice then does a measurement of her ancilla qubit in the computational basis {|0⟩A′ , |1⟩A′}.
Suppose the outcome for A′ is |i⟩A′ , i ∈ {0, 1}. What are the possible outcome global states
for each i = 0, 1 and their respective probabilities p0, p1 ?

3. Finally Alice transmits to Bob one classical bit i ∈ {0, 1} corresponding to her outcome.
Propose simple local unitaries that Alice and Bob must perform in order to succeed with
their task. What is the overall success probability for this protocol ?

II. Entanglement dilution: This is a reverse task. Alice and Bob now initially share the
pair |Ψθ⟩ = cos θ|00⟩AB + sin θ|11⟩AB, 0 < θ < 2π. They should transform it to a pure Bell
state |Φ⟩AB = 1√

2
(|00⟩AB + |11⟩AB). Alice can use an ancilla qubit again. We guide you

through the LOCC:

4. Alice performs the same local unitary U on her two qubits AA′. Her ancilla qubit is
initially in the satte |0⟩A′ as before. Compute the final global state of the three qubits ABA′.

5. Alice then measures her ancilla qubit in the basis {|0⟩A′ , |1⟩A′}. Explain what are the
possible outputs for the global state (of ABA′) and their corresponding probabilities.

6. Finally Alice sends a classical bit to Bob to inform him about the outcome of her mea-
surement. And now, what can they both conclude about the success probability of this
protocol?
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Solution to Problem 1:

(a) • For ei = 0 Alice sends qubits |xi⟩ = |0⟩ , |1⟩. And for di = 0 Bob’s measurement
basis is |α⟩ , |α⊥⟩. Thus applying Born’s rule:

P (xi = yi|ei = di = 0, xi = 0) = | ⟨α|0⟩ |2 = (cosα)2

P (xi = yi|ei = di = 0, xi = 1) = | ⟨α⊥|1⟩ |2 = (cosα)2

• Similarly, for ei = 1 Alice sends qubits H |xi⟩ = |+⟩ , |−⟩. And for di = 1 Bob’s
measurement basis is H |α⟩ , H |α⊥⟩. Thus applying Born’s rule:

P (xi = yi|ei = di = 1, xi = 0) = | ⟨α|H†H |0⟩ |2 = (cosα)2

P (xi = yi|ei = di = 1, xi = 1) = | ⟨α⊥|H†H |1⟩ |2 = (cosα)2

Therefore since P (xi = 0) = P (xi = 1) = 1/2

P (xi = yi|ei = di = 0) =
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

and

P (xi = yi|ei = di = 1) =
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

Finally,

P (xi = yi|ei = di) = P (xi = yi|ei = di, ei = 0)P (ei = 0) + P (xi = yi|ei = di, ei = 1)P (ei = 1)

=
1

2
(cosα)2 +

1

2
(cosα)2 = (cosα)2

We check that when α = 0 this probability is one (ideal BB84). Other sanity checks
are for α = π/2 this prob is zero and for α = π/4 this prob is 1/2 (should be intuitive).

(b) Once the quantum communication and measurement phases are finished, Alice and Bob
reveal on a public channel their basis choices ei and di. Each time ei ̸= di they discard
bits xi and yi. The set P of other bits forms their one-time pad. They check agreement
xi = yi with security test: they reveal on a public channel a small fraction of bits in
P and (assuming the protocol is noiseless and there is no eavesdropper) the fraction of
tested bits which agree is (cosα)2 ≈ 1 − α2/2 (for α small). From this fraction they
get an estimate of α.

Solution to problem 2:

(a) Proof by contradiction: suppose |S⟩ is not entangled:

|S⟩ =
(
a |0⟩+ b |1⟩

)
⊗

(
c |0⟩+ d |1⟩

)
= ac |00⟩+ ad |01⟩+ bc |10⟩+ bd |11⟩ .
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Then ac = ad = bd = 1√
3
and bc = 0. This implies b ̸= 0 since bd ̸= 0; and c = 0

since b ̸= 0 and bc = 0. But then ac = 0 and since we also have ac = 1
3
we find a

contradiction. In conclusion |S⟩ must be entangled.

(b) Here are the states in Bob’s lab once he receives Alice’s qubit:

• Alice’s message 00: Bob gets |S⟩ = 1√
3

(
|00⟩+ |11⟩+ |01⟩

)
• Alice’s message 01: Bob gets X |S⟩ = 1√

3

(
|10⟩+ |01⟩+ |11⟩

)
• Alice’s message 10: Bob gets Z |S⟩ = 1√

3

(
|00⟩ − |11⟩+ |01⟩

)
• Alice’s message 11: Bob gets ZX |S⟩ = 1√

3

(
− |10⟩+ |01⟩ − |11⟩

)
(c) Alice sends 10 so Bob possesses the pair

Z |S⟩ = 1√
3

(
|00⟩ − |11⟩+ |01⟩

)
.

The measurement outcomes and probabilities for Bob are

• |Ψ+⟩ with probability | ⟨Ψ+|Z |S⟩ |2 = 1
2
· 1
3
(1− 1)2 = 0

• |Ψ−⟩ with probability | ⟨Ψ−|Z |S⟩ |2 = 1
2
· 1
3
(1 + 1)2 = 2

3

• |Φ+⟩ with probability | ⟨Φ+|Z |S⟩ |2 = 1
2
· 1
3
(1)2 = 1

6

• |Φ−⟩ with probability | ⟨Φ−|Z |S⟩ |2 = 1
2
· 1
3
(1)2 = 1

6

Note that probabilities indeed sum to one.

(d) According to the decoding map of Bob:

P (transmission error) = P (Bob doesnt getΨ−) = 0 +
1

6
+

1

6
=

1

3

Solution to Problem 3:

Question a: Firstly, one can check that:

1√
2
(|x+⟩ − |x−⟩) = |z−⟩ =⇒ 1√

2
(|x+⟩ − |x−⟩)⊗

1√
2
(|x+⟩ − |x−⟩) = |z−z−⟩ (1)

and:

|x±x±⟩ =
1√
2
(|z+⟩ ± |z−⟩)⊗

1√
2
(|z+⟩ ± |z−⟩) (2)

=
1

2
(|z+z+⟩+ |z−z−⟩ ± |z+z−⟩ ± |z−z+⟩) (3)
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So:
1√
2
(|x+x+⟩ − |x−x−⟩) =

1√
2
(|z+z−⟩+ |z−z+⟩) (4)

Therefore:

|W ⟩ = 1√
3
(|z−⟩ ⊗ (|z+z−⟩+ |z−z+⟩) + |z+⟩ ⊗ |z−z−⟩) (5)

=
1√
3

(
|z−⟩ ⊗ (|x+x+⟩ − |x−x−⟩) + |z+⟩ ⊗

1√
2
(|x+⟩ − |x−⟩)⊗

1√
2
(|x+⟩ − |x−⟩)

)
(6)

Assume the basis is Z −X −X, we get:

P (|z+⟩A) = ⟨W | (|z+⟩A ⟨z+|A ⊗ IB ⊗ Ic) |W ⟩ = 1

3
(7)

1. Conditional on the outcome |z+⟩A (which happens with probability 1
3
), Bob and Charlie

obtain an outcome in the set {|x+x+⟩ , |x−x+⟩ , |x+x−⟩ , |x−x−⟩} with uniform proba-
bility (1

4
)

2. Conditional on the outcome |z−⟩A (which happens with probability 2
3
), Bob and Charlie

get either |x−x−⟩BC with probability 1
2
or |x+x+⟩BC with probability 1

2
.

Question b: Let’s compute for instance the probability that Charlie and Bob get the same
one-time-pad:

1. First of all, there are 3 interesting basis among 23 = 8 possible basis, so 3
8
chances to

have a correct basis.

2. Conditional on the previous event, Alice is chosen as the decider with probability 1
3

3. Conditional on the previous events, Alice measures the outcome |z−⟩ with probability
2
3

Therefore, in total, the probability to generate a common key-bit between Charlie and Bob
is 3

8
1
3
2
3
= 1

12
for each shared W state (so 3 qubits shared). Thus with 36 qubits BC generate

1 key-bit, but at the same time also AB and AC have generated 1 key-bit each (when the
third person was a decider). Thus with 36 qubits the trio generates 3 key bits (associated to
the couples AB,, BC, AC). On average this protocol consumes 12 qubits to generate one key
bit.

Remark: In the Ekert-91 protocol (see the book Nielsen and Chuang for example) there are 9
basis choices out of which 2 are good to generate a common key-bit between the two parties
A and B. So for 9 EPR pairs, i.e., 18 qubits we have 2 key-bits. On average the Ekert-91
protocol consumes 9 qubits to generate 1 key-bit.
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Solution to Problem 4:

1) We find
U |0⟩A ⊗ |0⟩A′ = cos θ|0⟩A ⊗ |0⟩A′ + i sin θ|0⟩A ⊗ |1⟩A′

and
U |0⟩A ⊗ |1⟩A′ = sin θ|1⟩A ⊗ |0⟩A′ + i cos θ|1⟩A ⊗ |1⟩A′

From which we deduce the final global state:

1√
2
(cos θ|00⟩AB + sin θ|11⟩AB)⊗ |0⟩A′ +

1√
2
(sin θ|00⟩AB + cos θ|11⟩AB)⊗ |1⟩A′

2) Alice does a measurement on A′. The possible resulting states are

1√
2
(cos θ|00⟩AB + sin θ|11⟩AB),

1√
2
(sin θ|00⟩AB + cos θ|11⟩AB)⊗ |1⟩A′

with probabilities

p0 =
1

2
(cos2 θ + sin2 θ) =

1

2
, p1 =

1

2
(cos2 θ + sin2 θ) =

1

2

3) When Bob reeives the classical bit 0 or 1, he knows what is the resulting global state. If
0 is the outcome then Alice and Bob aplly the local unitaries 1A ⊗ 1B. If 1 is the outcome
then Alice and Bob aplly the local unitaries XA ⊗XB.
The success probability of the protocol is always 1/2 + 1/2 = 1.
Remark: this protocol is a simple example of so called ’entanglement concentration’.

4) We compute:

U |Ψθ⟩ ⊗ |0⟩A′

= cos2 θ|0⟩A|0⟩A′|0⟩B + i cos θ sin θ|0⟩A|1⟩A′|0⟩B + sin2 θ|1⟩A|0⟩A′ |1⟩B + i sin θ cos θ|1⟩A|1⟩A′ |1⟩B
= (cos2 θ|00⟩AB + sin2 θ|11⟩AB)⊗ |0⟩A′ + i sin θ cos θ(|00⟩AB + |11⟩AB)⊗ |1⟩A′

5) Alice Measures her ancilla qubit. The possible outcome states are

(cos2 θ|00⟩AB + sin2 θ|11⟩AB)√
cos4 θ + sin4 θ

⊗ |0⟩A′ ,
1√
2
(|00⟩AB + |11⟩AB)⊗ |1⟩A′

with probabilities
p0 = cos4 θ + sin4 θ, p1 = 2(sin θ cos θ)2
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6) Alice send s a classical bit 0 or 1 to Bob according to her measurement result. Hence they
both know what is the resulting state. The success probability of the protocol is thus

p1 = 2(sin θ cos θ)2

Remark: this protocol is an example of ’entanglement dilution’.

We see that entanglement concentration and dilution do not have symmetric success proba-
bilities.
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